OE22-P2-OL23	107.75 (8)	P2—OL12—P1	124.97 (8)
OE21-P2-OL23	109.85 (8)	P3-OL13-P1	126.01 (8)
OL12-P2-OL23	100.46 (7)	P3OL23P2	125.91 (8)
OE31-P3-OE32	118.65 (8)	P1—P2—P3	60.12 (2)
OE31-P3-OL13	111.59(7)	P1—P3—P2	59.88 (2
OE32-P3-OL13	107.25 (7)	P2-P1-P3	60.00 (2)
OE31-P3-OL23	110.23 (8)	H1W1—OW1—H2W1	108 (3)
OE32-P3-OL23	106.23 (8)	H1W2—OW2—H2W2	102 (4)
OL13-P3-OL23	101.38(7)	N1-C1-C2 ⁱⁱⁱ	112.7 (2)
OE31-Na-OE12 ⁱⁱ	115.11 (6)	$C1^{vi}$ C2C3 ^{iv}	111.9 (2)
OE31-Na-OE31	81.04 (5)	C4C3C2 ⁱⁱ	112.9 (2)
OE12 ⁱⁱ —Na—OE31 ⁱ	92.49 (6)	C3C4C5	112.7 (2)
OE31—Na—OE21	86.33 (5)	C6 ^v —C5—C4	111.2 (2)
OE12 ⁱⁱ —Na—OE21	96.42 (6)	N2C6C5 ^v	112.9 (2)
OE31 ⁱ —Na—OE21	166.78 (6)		

Symmetry codes: (i) 2 - x, 1 - y, -1 - z; (ii) x, y, z - 1; (iii) x - 1, y, z; (iv) x, y, 1 + z; (v) 1 - x, -y, -1 - z; (vi) 1 + x, y, z.

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdots A$	$D - H \cdots A$
OW1—H1 $W1$ ···OE22 ⁱ	0.74 (3)	1.99 (3)	2.729 (2)	176 (3)
$OW1 - H2W1 \cdot \cdot \cdot OE22^{ii}$	0.74 (3)	2.08(3)	2.816 (2)	170 (3)
OW2—H1 $W2$ ···OE12 ⁱⁿ	0.80(3)	2.26(3)	3.010(2)	156 (3)
OW2—H2W2···OE32 ^{iv}	0.78 (5)	2.22 (5)	2.988 (2)	172 (4)
$N1 - H1N1 \cdots OE11^{iii}$	0.83 (3)	2.16(3)	2.825 (2)	138 (3)
N1H2N1····OE32*	0.89(3)	1.98 (3)	2.861 (2)	172 (2)
N1—H3N1···OE11	0.96(3)	2.05 (3)	3.006 (2)	177 (3)
N2-H1N2···OE21	0.87(3)	1.91 (3)	2.775 (2)	169 (2)
$N2 - H2N2 \cdot \cdot \cdot OE32^{v}$	0.89(3)	1.99 (3)	2.852 (2)	164 (2)
N2H3N2···OW1	0.88(3)	1.89 (3)	2.740 (3)	163 (2)
Symmetry codes: (i) $1-x$, $-y$, $-1-z$; (ii) x , y , $z-1$; (iii) $1-x$, $1-y$, $-z$; (iv) $2-x$, $1-y$, $-1-z$; (v) $x-1$, y , z .				

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Software used to prepare material for publication: SHELXL93.

The authors wish to express their gratitude to Professor T. Jouini (Département de Chimie Faculté des Sciences de Tunis, Tunisia) for the X-ray data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DU1172). Services for accessing these data are described at the back of the journal.

References

- Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
- Brown, I. D. (1976). Acta Cryst. A32, 24-31.
- Charfi, M. & Jouini, A. (1996). Acta Cryst. C52, 2250-2253.
- Durif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Loiseau, T. & Férey, G. (1994). J. Solid State Chem. 111, 403-415.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Thabet, H., Bdiri, M. & Jouini, A. (1997). J. Solid State Chem. In preparation.
- Thabet, H. & Jouini, A. (1996). Acta Cryst. C52, 2248-2250.

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1997). C53, 1184-1186

catena-Poly[[(5-ethyl-2-methylpyridine-N)copper(II)]-μ-(N-salicylideneglycinato-O,N,O':O'')]

SALAM A. WARDA

Institut für Anorganische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Lahnberge, 35032 Marburg, Germany. E-mail: warda@ax1501.chemie.unimarburg.de

(Received 27 February 1997; accepted 8 April 1997)

Abstract

The title complex, $[Cu(C_9H_7NO_3)(C_8H_{11}N)]_n$, adopts a square-pyramidal Cu^{II} coordination with the tridentate *N*-salicylideneglycinato Schiff base dianion (TSB²⁻) and the 5-ethyl-2-methylpyridine ligand bound in the basal plane. The apex of the pyramid is occupied by the carboxylic O atom from the neighbouring chelate at an apical distance of 2.268 (2) Å, which is the shortest apical distance in this class of substances.

Comment

Copper(II) complexes with tridentate Schiff base dianions of the N-salicylideneaminoalkanoato type (TSB^{2-}) represent a relatively simple model for studies of cooperative bonding effects, which can be investigated by electron paramagnetic resonance (EPR) spectroscopy. In these complexes, which are of the general type $[Cu(TSB)(L)]_n$ (Warda, 1994), three donor atoms (O, N, O) of the Schiff base and a fourth donor atom from the neutral ligand L (N, O or S) normally define the base of a square pyramid. For isolated (monomeric) structures, the Cu coordination can be square planar or square pyramidal when a neutral donor ligand is located in the apical site (n = 1; Ueki, Ashida,Sasada & Kakudo, 1969; Warda, Friebel, Sivý, Plesch & Švailenová, 1996). If a phenolic O atom from a neighbouring molecule is apically coordinated, dimeric structures are formed (n = 2; Warda, 1994; Warda, Dahlke, Wocadlo, Massa & Friebel, 1997). n = 4 is found in the case of (4-ethylpyridine)(N-salicylideneglycinato)copper(II) (Warda, 1997). Polymeric struc-

tures $(n = \infty)$ are achieved when the apical position is occupied by a carboxylic O atom from an adjacent molecule to make infinite zigzag chains (Warda, Friebel, Sivý, Plesch & Bláhová, 1997).

The molecule of the title complex, (I), is characterized by a square-pyramidal Cu^{II} coordination with the tridentate Schiff base *N*-salicylideneglycinato dianion and a monodentate ligand (5-ethyl-2-methylpyridine) in the basal plane. The apical Cu—O3($\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$) bond length, 2.268 (2) Å, originating from

Fig. 1. A view of the asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Polymeric association of the title compound.

a carboxylic O atom of a neighbouring molecule, is the shortest so far for all products of N-salicylideneaminoalkanoatocopper(II) with neutral donor ligands. An infinite one-dimensional chain is formed by the $Cu \cdots O3 \cdots Cu$ bonds along the crystallographic b axis. EPR patterns display a coupled g tensor, indicative of distorted ferrodistortive ordering, where the distance of the differently oriented paramagnetic centres is shorter than the critical distance of 8.3 Å (Warda, 1994); in (I), the Cu···Cu $(\frac{3}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z)$ distance is 5.6557 (6) Å (*PLATON*; Spek, 1990). It was not possible to explain the coupling of the g parameters from the EPR data alone; thus, the structure determination was very important for the solution of this problem. The Cu polyhedra are also ordered in a quasi-ferrodistortive orientation, because the molecular axes (O—Cu—O x axis and N— Cu-N y axis) are not exactly parallel to each other (Fig. 2). The short apical Cu—O3 $(\frac{3}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z)$ distance explains the high value of the g tensor.

Experimental

The title compound was synthesized from aqua-N-salicylideneglycinatocopper(II) hemihydrate (Ueki, Ashida, Sasada & Kakudo, 1967) and 5-ethyl-2-methylpyridine.

Crystal data

$[Cu(C_9H_7NO_3)(C_8H_{11}N)]$	Cu $K\alpha$ radiation
$M_r = 361.87$	$\lambda = 1.54178 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_1/n$	reflections
a = 13.5225 (8) Å	$\theta = 40.3 - 46.7^{\circ}$
b = 6.9078(3) Å	$\mu = 2.057 \text{ mm}^{-1}$
c = 17.6194 (10) Å	T = 293 (2) K
$\beta = 102.327(5)^{\circ}$	Prism
V = 1607.90 (15) Å ³	$0.20 \times 0.10 \times 0.10$ mm
Z = 4	Dark green
$D_{\rm r} = 1.495 {\rm Mg} {\rm m}^{-3}$	
D_m not measured	

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega - 2\theta$ scans Absorption correction: empirical with ψ scans (Siemens, 1996*a*) $T_{min} = 0.668$, $T_{max} = 0.830$ 2509 measured reflections 2347 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.105$ S = 1.0702347 reflections 209 parameters H atoms riding 2233 reflections with $I > 2\sigma(I)$ $R_{int} = 0.089$ $\theta_{max} = 59.98^{\circ}$ $h = -15 \rightarrow 5$ $k = 0 \rightarrow 7$ $l = -19 \rightarrow 19$ 3 standard reflections frequency: 120 min intensity decay: 3%

 $\Delta \rho_{max} = 0.379 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.499 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXL*96 (Sheldrick, 1996) Extinction coefficient: 0.0053 (6)

$w = 1/[\sigma^2(F_o^2) + (0.0577P)^2 + 1.8469P]$	Scattering factors from International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)
$(\Delta/\sigma)_{\rm max} = 0.001$	

Table 1. Selected geometric parameters (Å, °)

Cu01	1.9328 (19)	Cu-N2	2.031 (2)
Cu—N1	1.936 (2)	Cu—O3 ⁱ	2.268 (2)
Cu—O2	2.0021 (19)		
01—Cu—N1	93.48 (9)	O2—Cu—N2	91.56 (8)
01—Cu—O2	166.68 (9)	O1-Cu-O31	99.70 (9)
N1-Cu-O2	82.48 (9)	N1—Cu—O3 ⁱ	102.63 (9)
01-Cu-N2	89.05 (9)	O2—Cu—O3 ⁱ	93.58 (8)
N1-Cu-N2	164.38 (10)	N2—Cu—O3 ⁱ	92.11 (9)
Symmetry code: (i	i) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2}$	— z.	

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994). Cell refinement: CAD-4 EXPRESS. Data reduction: XCAD-4 (Harms, 1996). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL96 (beta test version 03) (Sheldrick, 1996). Molecular graphics: XP in SHELXTL (Siemens, 1996b). Software used to prepare material for publication: SHELXL96.

We are grateful to the Institute of Inorganic Chemistry of the University of Marburg.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1101). Services for accessing these data are described at the back of the journal.

References

- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. (1996). XCAD-4. Program for the Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SHELXL96. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1996a). XPREP in SHELXTL. Program for Data Preparation and Reciprocal Space Exploration. Version 5.05. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996b). XP in SHELXTL. Molecular Graphics Program. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Ueki, T., Ashida, T., Sasada, Y. & Kakudo, M. (1967). Acta Cryst. 22, 870-878.
- Ueki, T., Ashida, T., Sasada, Y. & Kakudo, M. (1969). Acta Cryst. B25, 328-336.
- Warda, S. A. (1994). Bioanorganische Kupfer(II) Komplexe mit dreizähnigen O,N,O Chelat-Dianionen und additiven einzähnigen Donorliganden. Aachen: Verlag Shaker.
- Warda, S. A. (1997). Acta Cryst. C53, 697-699.
- Warda, S. A., Dahlke, P., Wocadlo, S., Massa, W. & Friebel, C. (1997). Inorg. Chim. Acta. In the press.
- Warda, S. A., Friebel, C., Sivý, J., Plesch, G. & Bláhová, M. (1997). Acta Cryst. C53, 50–54.
- Warda, S. A., Friebel, C., Sivý, J., Plesch, G. & Švajlenová, M. (1996). Acta Cryst. C52, 2763–2766.

Acta Cryst. (1997). C53, 1186-1188

Monomeric (Pyrazine-N)(N-salicylidene- α -amino-2-methylpropanoato-O, N, O')copper(II)

SALAM A. WARDA

Institut für Anorganische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany. E-mail: warda@ax1501.chemie.uni-marburg.de

(Received 22 January 1997; accepted 8 April 1997)

Abstract

The title compound, $[Cu(C_{11}H_{11}NO_3)(C_4H_4N_2)]$, adopts a square-planar Cu^{ll} coordination with a tridentate *N*salicylidene- α -amino-2-methylpropanoate [2-methyl-2-(salicylideneamino)propanoate] Schiff base dianion and a pyrazine ligand. The molecules are arranged in two magnetically inequivalent orientations.

Comment

Copper(II) complexes with tridentate Schiff base dianions of the N-salicylideneaminoalkanoato type (TSB^{2-}) represent a relatively simple model for studies of cooperative bonding effects, which can be investigated by electron paramagnetic resonance (EPR) spectroscopy. In these complexes, which are of the general type $[Cu(TSB)(L)]_n$ (Warda, 1994), three donor atoms (O, N, O) of the Schiff base and a fourth donor atom from the neutral ligand L (N, O or S) normally define the base of a square pyramid. For isolated (monomeric) structures, the copper coordination can be square planar or square pyramidal when a neutral donor ligand is located in the apical site (n = 1; Ueki, Ashida, Sasada & Kakudo,1969; Warda, Friebel, Sivý, Plesch & Švajlenová, 1996). Polymeric structures $(n = \infty)$ are achieved when the apical position is occupied by a carboxylic oxygen from an adjacent molecule to form infinite zigzag chains (Ueki, Ashida, Sasada & Kakudo, 1967; Warda, Friebel, Sivý, Plesch & Bláhová, 1997). In this comunication, we report a case with n = 0, (I).

In the title compound, (I), the environment of the copper(II) ion is square planar (Fig. 1), with O,N,O-donor atoms of the N-salicylidene- α -aminoisobutyrato